Полiт.ua Государственная сеть Государственные люди Войти
22 июня 2018, пятница, 14:34
Facebook Twitter VK.com Telegram

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

06 июня 2018, 09:33

Акустический квантовый компьютер

Микроволновый чип
Микроволновый чип
Дизайнер: Елена Хавина, пресс-служба МФТИ

Исследователи из Московского физико-технического института продемонстрировали искусственную квантовую систему, в которой квантовый бит взаимодействует с акустическим резонатором в квантовом режиме. Это позволит изучать на акустических волнах известные эффекты квантовой оптики, и развить альтернативный (акустический) подход к созданию квантовых компьютеров, который может обеспечить им большую устойчивость в работе и компактность. Кроме сотрудников лаборатории искусственных квантовых систем МФТИ, в работе принимали участие ученые из МИСиС, МГПУ, Лондонского университета. Статья с результатами опубликована в Physical Review Letters, кратко о них рассказывает пресс-релиз МФТИ.

«До нас никто не связывал кубит с резонатором на поверхностных акустических волнах в квантовом режиме. Были отдельно изучены резонаторы такого типа, но без кубита, и отдельно кубиты с поверхностно акустическими волнами, но бегущими, не в резонаторе. На объемных резонаторах квантовый режим был показан, но дело далеко не пошло, возможно, из-за сложности производства. Мы же использовали однослойную структуру, которая делается с помощью существующих технологий», — рассказывает Алексей Болгар, научный сотрудник лаборатории искусственных квантовых систем МФТИ, в которой было выполнено исследование.

Рисунок 1. Энергетический спектр трасмона похож на энергетический спектр атома. Частота перехода между первыми двумя уровнями равна ω01   

Ученые изучали взаимодействие сверхпроводящего кубита — трансмона — с поверхностными акустическими волнами в резонаторе. Трансмон ведет себя как искусственный атом, то есть у него есть энергетические уровни, между которыми он может переходить (см. рисунок 1). Есть стандартный микроволновый подход: если на одном чипе с кубитом расположить микроволновый резонатор, который будет поддерживать и усиливать волну, то кубит может с ним взаимодействовать. Кубит может переходить в возбужденное или основное состояние, поглощая из резонатора или излучая в него фотон с частотой, равной частоте перехода кубита. При этом резонансная частота самого резонатора изменяется в зависимости от состояния кубита. Таким образом, измеряя характеристики резонатора, можно производить чтение информации с кубита. Не так давно появилось новое направление, в котором вместо микроволнового излучения (фотонов) используется механическое воздействие (фононы) в виде акустических волн. Несмотря на то, что квантовоакустический подход развит далеко не так сильно, как микроволновый, у него есть много преимуществ.

Скорость распространения акустических волн в 100 тыс. раз меньше скорости света, следовательно и длины волн во столько же раз меньше. Размер резонатора должен «подходить» под длину волны. В микроволновой квантовой системе длина волны будет составлять в лучшем случае около одного сантиметра. Для этого требуется большой резонатор, а чем больше резонатор, тем больше в нем оказывается дефектов, которые всегда присутствуют на поверхности чипа. Эти дефекты приводят к короткому времени жизни состояния кубита, что мешает производить масштабные квантовые вычисления и тормозит создание квантового компьютера. Мировые рекорды составляют порядка 100 микросекунд (0,0 001 секунды). В случае с акустикой длина волны составляет около 1 микрометра, что позволяет размещать высокодобротные резонаторы размером 300 микрон компактно на чипе.

Кроме того, из-за большой длины волны в микроволновый электромагнитный резонатор сложно поместить два кубита, которые бы взаимодействовали с ним на разных частотах. Поэтому в микроволновом случае для каждого кубита приходится делать отдельный резонатор (см. рисунок 2). В акустическом случае можно сделать несколько кубитов, немного отличающиеся по частоте перехода, и разместить их в одном механическом резонаторе. Таким образом, квантовый чип на звуковых волнах должен быть гораздо компактнее тех, что производят сейчас. К тому же акустодинамика может решить проблему чувствительности квантово-вычислительных систем к электромагнитному шуму.

Авторы статьи использовали резонатор, который работает на поверхностных акустических волнах — это волны, как на поверхности моря, но возникающие на поверхности твердого тела. Собранный чип показан на рисунке 3. На пьезоэлектрическую подложку из кварца напыляется алюминиевая схема из трансмона, резонатора и двух встречно-штыревых преобразователей (ВШП). Один ВШП действует как излучатель, другой — как приемник, между ними лежит пьезоэлектрик — материал, преобразующий электромагнитное воздействие в механическое и наоборот. На пьезоэлектрике возникает поверхностно-акустическая волна, которая бежит и запутывается между зеркалами резонатора. Внутри резонатора находится кубит (трансмон) с двумя энергетическими уровнями, емкость кубита тоже организована в виде ВШП. Целью исследования было показать, что он может взаимодействовать с резонатором, возбуждаясь и релаксируя, как квантовый объект. Измерения проводились в криостате, охлажденном до десятков милликельвин.

Рисунок 2. Микроволновый чип. На квадратном участке — их всего семь — расположен кубит. Изогнутые линии — это микроволновые резонаторы, у каждого из них своя резонансная частота. Дизайнер: Елена Хавина, пресс-служба МФТИ

Рисунок 3. Акустический чип. Размер всей системы соизмерим с размером квадратного участка на рисунке 2. Дизайнер: Елена Хавина, пресс-служба МФТИ

Схема чипа. Резонатор Фабри-Перо состоит из двух Брэгговских зеркал — каждое состоит из 200 параллельных полос (показаны желтым), отстоящих друг от друга на половину длины акустической волны. Длина волны равна 0,98 мкм, или 980 нм. В резонаторе находится кубит (трансмон) и два встречно-штыревых преобразователя — приемник и излучатель. Сквид — часть трансмона, чувствительная к слабому магнитному полю. По рисунку авторов статьи, дизайнер — Елена Хавина, пресс-служба МФТИ

Характерным эффектом для квантового режима является так называемое антипересечение, или квазипересечение, энергетических уровней (см. рисунок 4). Частотой перехода кубита можно управлять с помощью внешнего магнитного поля — для этого у трансмона есть СКВИД-магнетометр. Там, где частота резонатора совпадает с частотой перехода кубита, происходит расщепление в энергетическом спектре кубита: при одном значении магнитного потока имеются две характерных частоты перехода. Ученые пронаблюдали это явление в созданном ими чипе и доказали, что трасмон и акустический резонатор взаимодействуют в квантовом режиме.

Рисунок 4. Интенсивность проходящего через резонатор сигнала в зависимости от его частоты и величины магнитного потока. (a) То, что получилось экспериментально. (b) То, что получилось теоретически из решения уравнения квантовой модели. По рисунку авторов статьи, дизайнер — Елена Хавина, пресс-служба МФТИ

Основная глобальная цель — показать, что явления и эффекты квантовой оптики работают на акустике. Кроме того, это альтернативный путь к созданию квантового компьютера. Хотя на микроволновых интерфейсах собирают уже по 50 кубитов и акустическим пока до этого далеко, у квантовой акустики много преимуществ, которые могут пригодиться в будущем.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi автоматизация бизнеса Адыгея акустика Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса Византия викинги вирусы военная полиция Вольное историческое общество воспитание Вселенная вулканология гаджеты генетика география геология геофизика глобальное потепление гравитация грибы грипп дельфины демография демократия дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура картография католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые научный юмор неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Россотрудничество русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа эволюция экология эмбриональное развитие эпидемии эпидемиология этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.