28 ноября 2020, суббота, 22:15
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

19 июля 2010, 00:56

Молекулярные контейнеры

Наука и жизнь

О контейнерной химии впервые заговорили сорок лет назад: именно тогда были открыты краун-эфиры, первые синтетические аналоги природных веществ, осуществляющих перенос ионов металлов через мембрану клетки. Это открытие позволило ученым создать так называемые молекулы-«контейнеры»: искусственные химические соединения, способные захватывать и удерживать уже не только ионы металлов, но и нейтральные молекулы. Сегодня химики синтезируют все новые краун-соединения, применяя их в медицине, технике, науке и сельском хозяйстве. «Полит.ру» публикует статью доктора химических наук Юрия Чиркова, в которой речь пойдет о последних достижениях контейнерной химии, а также об ученых, стоявших у ее истоков. Статья опубликована в новом номере журнала «Наука и жизнь» (2010. №7).

Из всех связей наиприятнейшей является связь между хозяином и гостем.
Эсхил, древнегреческий поэт и драматург

Как здание строится из кирпичей, так ткани живых существ состоят из клеток. К примеру, организм взрослого человека искусно смонтирован из 100 триллионов (!) клеток. Подобно тому как организм состоит из отдельных органов, клетка сконструирована из многих структур, ответственных за питание, размножение, выделение… Она обладает даже «эрудицией» и «умом». Клеточная «эрудиция»? Это хранение большого набора программ целесообразного реагирования на внешние сигналы. А «ум»? Способность включать соответствующие программы по мере надобности. Что это за программы? Какие биомолекулы в клетке их осуществляют?

Хоровод калия с натрием

Когда-то на нашей планете бурлил Первоокеан. В нём возникли и плавали первые биомолекулы. Однако хитроумной Природе этого показалось мало. И она в какой-то момент решила собрать биомолекулы в сгустки и создать для них особые искусственные условия существования. Так, должно быть, и возникла первая живая клетка. Внутри биологической мембраны, которая огораживает пределы клетки, царит особый мир, комфортный для «клеточных» биомолекул.

Что это за условия? В любой клетке ионов калия (К+) всегда гораздо больше, чем ионов натрия (Na+). Вне её всё наоборот: здесь преобладает натрий. Впрочем, вот точные цифры. В клетке, точнее, во внутриклеточной жидкости, например, эритроцитов человека концентрация калия (в условных единицах) К+ — 92, натрия Na+ — 11. А вне клетки (в межклеточной жидкости, скажем в плазме крови) К+ — всего 5, а Na+ — 152 единицы. В нервной же клетке (нейроне) неравенство концентраций ещё более ощутимо: К+ — 300, Na+ — 10. Снаружи нейрона напротив: К+ — 22, Na+ — 440.

Какие преимущества это даёт живой клетке? Такое неоднородное распределение катионов щелочных металлов по обе стороны клеточной мембраны создаёт трансмембранный электрический потенциал, как в батарейке. Эта разность потенциалов, её энергия, используется, среди прочего, при передаче информации по нейронам в нервной системе.

Разность концентраций ионов К+ и Na+ по обе стороны мембраны играет ключевую роль не только в проведении нервных импульсов, но и в регуляции клеточного осмотического давления и водно-солевого обмена. Например, с помощью встроенных в мембраны клеток особых ферментов (К+, Na+ — АТФаз) морские птицы умеют опреснять для себя солёную воду. Так что вода, попадающая во внутриклеточное пространство, уже пресная.

Таким образом, биомембраны клеток способны отличать ионы калия от ионов натрия, хотя эти ионы имеют близкие размеры и одинаковый положительный заряд. Более того, в мембрану живой клетки как будто встроен и действует особый «насос»: он непрерывно выкачивает из клетки натрий и накачивает в неё калий, организуя особое действо — калий-натриевый обмен.

Проблема активного переноса ионов через биологические мембраны сотню лет волновала умы исследователей. Разгадка пришла примерно полвека назад. Большой вклад в эти исследования внесли советские учёные.

Ионофоры

В 1959 году в Академии наук СССР был создан Институт химии природных соединений АН СССР, возглавил его академик Михаил Михайлович Шемякин (1908—1970). Сотрудники нового института начали с самого простого — с низкомолекулярных соединений в ткани живого, с изучения того, как антибиотики, витамины и прочие биорегуляторы воздействуют на клетки живого организма, с исследования молекулярных механизмов их действия.

Шемякин раньше других уловил момент оформления новой науки и со свойственным ему темпераментом принялся насаждать её на доступном ему пространстве. В частности, как и учёные других научных учреждений мира, шемякинцы занялись проблемой валиномицина.

Антибиотик валиномицин впервые был выделен из экстракта штамма бактерий Streptomyces fulvissimus австрийским исследователем Г. Брокманом в 1954—1955 годах. А в 1963 году в лаборатории М. М. Шемякина установили химическую структуру этого соединения.

Валиномицин представляет собой депсипептид, свёрнутый в кольцо. Он стал «фирменным блюдом» института, но его успешный синтез доставил советским учёным немало хлопот. Дело в том, что немецкие химики, устанавливая строение валиномицина, ошибочно решили, что его кольцо содержит не 12, а 8 остатков. Следуя их формуле, шемякинцы получили то, что не имело ничего общего с природным антибиотиком. Понадобилась интеллектуальная смелость, чтобы предположить ошибку в размере кольца.

Между тем прошло несколько лет, и слово «валиномицин», ранее известное лишь узкому кругу «пептидчиков», внезапно заполонило страницы биологических журналов. Началось это с открытия способности валиномицина стимулировать перенос ионов калия через биологические мембраны. Вскоре американцы П. Мюллер и Д. Рудин предположили, что валиномицин играет роль контейнера для переноса ионов. Согласно их гипотезе, ион калия переправляется через мембрану, спрятавшись внутри гораздо большей по размеру молекулы антибиотика.

Кристаллическая структура K+-комплекса валиномицина. Этот переносчик ионов проходит сквозь мембрану клетки и на другом её конце отдаёт ион в раствор.

Кристаллическая структура K+-комплекса валиномицина. Этот переносчик ионов проходит сквозь мембрану клетки и на другом её конце отдаёт ион в раствор.

В короткое время Михаилу Шемякину удалось развернуть в Институте химии природных соединений исследования самых разных аспектов этой проблемы. Изучением закономерностей связи между структурой и функцией валиномицина и родственных ему веществ в той же лаборатории занялся и будущий академик и вице-президент Академии наук СССР Юрий Анатольевич Овчинников (1934—1988).

В те годы Юрий Овчинников занимался синтезом тетрациклинов. И был неприятно удивлён, когда Шемякин предложил ему сменить тему и заняться химией пептидов. После сложнейших схем синтеза тетрациклинов пептидная химия, в основе которой лежало наращивание полипептидных цепей однотипными аминокислотами, показалась талантливому учёному пресной, малотворческой. Потребовались долгие уговоры, дискуссии, приведение веских доводов, чтобы убедить Овчинникова и пришедших с ним выпускников МГУ в актуальности, сложности и своеобразии предлагаемой им темы исследований.

Вскоре вслед за валиномицином удалось обнаружить и другие, подобные ему вещества природного происхождения — вкупе весь этот класс соединений получил в науке название «ионофоры». Благодаря их открытию и изучению был сделан решающий шаг в познании механизмов переноса ионов сквозь биологические мембраны. За большой вклад в эти исследования в 1978 году Ю. А. Овчинников и член-корреспондент АН СССР Вадим Тихонович Иванов были удостоены Ленинской премии.

Итоги работы советских учёных докладывались на многих международных конференциях и были суммированы в обзорах и монографии «Мембранно-активные комплексоны» (валиномицин и вообще все ионофоры называли также комплексонами).

Стоит отметить, что лужайку перед главным входом в Институт биоорганической химии АН СССР (ныне — РАН) украшает не бюст какого-нибудь именитого учёного, а скульптурная композиция, изображающая изящную пространственную структуру калиевого комплекса валиномицина.

Примеры валиномицина и других ионофоров, казалось бы, должны были настроить работу химиков-органиков на определённую волну. Разве не заманчиво было бы тотчас заняться синтезом хитроумных «ловушек» не только катионов, но и анионов, и даже молекул?

Всюду здесь план кольцевой макроструктуры налицо. И в её центре обязательно красуется атом того или иного металла.

Уже знакомый нам валиномицин также представляет собой макроциклическое соединение, скроенное из шести α-аминокислот и шести α-гидроксикислот, соединённых друг с другом попеременно амидными и сложноэфирными связями.

Таким образом, идея макроциклического комплексообразования буквально стучалась в умы исследователей. И, казалось бы, наличествовали научные предпосылки для подобных разработок. Ощущалась и потребность — такие вещества были остро необходимы (об этом мы ещё будем говорить). И всё ж требовался случай, неожиданная находка, которая начала бы лавинообразное развитие исследований в данной области, как позднее и случилось.

Золотая жила Чарльза Педерсена

Сын норвежца и японки Чарльз Педерсен родился 1904 году в Корее. Отучившись четыре года в Дейтоне (США) и год в аспирантуре Массачусетского технологического института (МТИ, США), Педерсен, несмотря на уговоры своего научного консультанта, не остался в МТИ для получения степени доктора философии. Молодому человеку не терпелось начать зарабатывать на жизнь самостоятельно. В 1927 году Педерсен устроился на работу в компанию «Дюпон».

К середине 40-х годов прошлого века Педерсен был уже зрелым специалистом, попробовавшим себя во многих областях. И его ждало дело всей жизни — открытие краун-эфиров — первых синтетических аналогов природных веществ, осуществляющих перенос ионов щелочных металлов через клеточную мембрану. Открытие, сделавшее его не только нобелевским лауреатом (1987 год, вместе с Дональдом Крамом и Жан-Мари Леном), но и родоначальником гигантского пласта исследований и открытий.

Свою эпохальную работу Педерсен сделал в 1962 году, однако целых пять лет не спешил публиковаться, а синтезировал всё новые и новые краун-эфиры. В полученных учёным соединениях фигурировали несколько атомов кислорода, связанных мостиками CH2CH2, которые, образуя кольцевую цепь (макроцикл того или иного размера), могут создавать прочные комплексы с ионами щелочных металлов.

В общей сложности Педерсен к 1967 году, моменту первой публикации в журнале Американского химического общества, синтезировал более 60 полиэфиров с числом кислородных атомов от 4 до 20 и размером цикла от 12- до 60-членного.

Похоже, он уже тогда чувствовал, что копает золотую жилу.

Интуитивная прозорливость

Что, собственно, сделал Чарльз Педерсен? Он синтезировал соединение, названное им краун-эфиром за особенность его структуры: она представляла собой пустое внутри и подвижное кольцо из углеродных атомов, связанное через мостики кислородными атомами. Варьируя размер цикла, учёный установил, что краун-эфиры способны избирательно связывать некоторые катионы, помещая их в центр своей «короны».

Тут уместно привести небольшую цитату, она взята из Нобелевской лекции, прочитанной Педерсеном в Стокгольме: «Мои первые действия мотивировались скорее эстетикой, чем наукой. Мне доставляло большое эстетическое наслаждение созерцать построенную компьютером трёхмерную модель структуры… Какой простой, изящный и эффективный способ улавливания доселе непокорённого катиона щелочного металла! Я принял эпитет «crown» («корона») для первого представителя этого класса, потому что его молекулярная модель выглядела именно так, и с ним катион мог быть коронован и декоронован без какого-либо физического ущерба для обоих».

Образование краун-эфира — комплекса 18-краун-6 и иона K+ (в центре). Надо отдать должное искусству Педерсена, сумевшего выделить и изучить свойства побочного продукта, полученного в крайне малом количестве.

Образование краун-эфира — комплекса 18-краун-6 и иона K+ (в центре). Надо отдать должное искусству Педерсена, сумевшего выделить и изучить свойства побочного продукта, полученного в крайне малом количестве.

Теперь подробности того, как было сделано Педерсеном открытие. Исследователь пытался создать ингибиторы (замедлители) аутоокисления нефтяных масел. Намерение было скромным и чисто прикладным. К разочарованию учёного, в результате произведённого им эксперимента образовался смолистый продукт, а вместо ожидаемого соединения выделилось ничтожное количество (< 1%) кристаллического вещества. Спектральные и аналитические данные свидетельствовали: полученное вещество является макроциклическим полиэфиром.

Что делают в подобных случаях? Неожиданная примесь? Да бог с ней! Не будем тратить времени, выбросим всё это и повторим синтез при более тщательной очистке исходных веществ и более строгом соблюдении необходимых для основной реакции условиях.

«Поступи я таким образом, — рассказывал в Нобелевской лекции Педерсен, — о краун-эфирах не было бы известно ничего до тех пор, пока другой исследователь не прошёл бы по моим следам и в критический момент не принял бы лучшее решение».

Но Педерсен, не колеблясь, стал изучать неизвестное вещество. От его внимания не ускользнули необычные особенности поведения нежданно полученного им соединения. Ему пришла в голову блестящая гипотеза о природе этого вещества, и он стал его тщательно исследовать. Работа учёного в итоге стала примером способности одного химика обеспечить интереснейшими задачами значительную часть химического сообщества.

Чарльзу Педерсену помог случай, это стоит подчеркнуть ещё раз. В английском языке есть слово «serendipity» (серендипити), которое обычно переводится на русский язык как «интуитивная прозорливость». В англоязычных энциклопедиях оно трактуется так: «способность случайно совершать желаемые открытия». История с открытием краун-эфиров — один из удачных примеров роли серендипити в науке.

Сферанды, кавитанды, криптанды

Открытие Чарльза Педерсена получило развитие в работах американца Дональда Крама (1919—2001) и француза Жан-Мари Лена (родился в 1939 году).

Краун-эфиры обладают двухмерной структурой. Краму удалось создать аналогичного рода трёхмерные структуры, способные захватывать ионы. В результате сложных многостадийных органических синтезов в начале 1980-х годов он создал так называемые молекулы-«контейнеры» с заранее организованной структурой — сферанды (буквально пустые внутри сферические структуры) и молекулы, обладающие внутренней полостью, — кавитанды (от английского слова «cavity» — полость), своего рода молекулярные чаши с углублениями. В чашах этих, так же как и в молекулах краун-эфиров, могли вольготно размещаться ионы.

Крам предположил и доказал, что, в отличие от относительно гибких молекул краун-эфиров в растворе, жёсткие молекулы сферанда или кавитанда, в силу особенностей своей трёхмерной структуры, должны проявлять более сильное связывание с ионами и превосходную катионную селективность.

Кольцевая жёсткая трёхмерная структура сферанда. Это один из сильнейших комплексообразователей, известных для катиона лития. Все другие катионы исключаются, поскольку слишком велики для того, чтобы соответствовать связывающей полости.

Кольцевая жёсткая трёхмерная структура сферанда. Это один из сильнейших комплексообразователей, известных для катиона лития. Все другие катионы исключаются, поскольку слишком велики для того, чтобы соответствовать связывающей полости.

Теперь попавший «в лапы» к сферанду или кавитанду катион металла оказывается в очень крепких «объятиях». Однако с той особенностью, что объятия эти открыты лишь для данного рода катионов. Селективность связи сферанда с катионом натрия (Na+) на 10 (!) порядков величины выше его сродства к катиону калия (K+). Отметим и другое: селективность для пары катионов Na+/K+ у сферанда много выше, чем селективность у природных ионофоров, не говоря уж об ионофорах синтетических.

Важное достоинство кавитанда состоит в том, что эта молекула способна принять и прочно удерживать не только ионы металлов, чем отличаются краун-эфиры. Кавитанд «заглатывает» и, так сказать, «держит в зубах» даже небольшие нейтральные молекулы, такие, например, как хлороформ или ацетон.

Другая большая заслуга Дональда Крама — он ввёл в науку новую концепцию «хозяин — гость». Свою Нобелевскую лекцию в Стокгольме Крам так и озаглавил: «Получение молекулярных комплексов типа ″хозяин — гость″ (The Design of Molecular Hosts, Guests, and their Complexes)». Понятно, что речь идёт всё о том же: о способности большой молекулы («хозяина») специфически «захватывать» и прятать в своём молекулярном «чреве», если можно так выразиться, «гостя» — ион того или иного знака или даже целую небольшую молекулу.

Теперь о вкладе Жан-Мари Лена. Он также был занят попытками создать искусственные химические соединения, обладающие свойствами природных ионофоров. Поиск таких соединений он начал в 1968 году. В результате были синтезированы особые молекулярные структуры — криптанды.

Как и Крам, Лен хотел сконструировать трёхмерный аналог краун-эфиров. Он предвидел, что с помощью таких структур ионы металлов могут быть полностью капсулированы внутри краунподобного «хозяина». Это должно было привести к увеличению катионной селективности молекулы-«хозяина» и к усилению его ионофороподобных транспортных свойств.

Криптанды получили своё название благодаря способности сферически окружать, как бы «погребать в склепе», ионы металлов (греческое «kruptos» означает «скрытый»). Ассоциация со склепом обусловлена наличием у этих соединений внутренней полости, защищённой с трёх сторон атомами кислорода, соединёнными между собой группами СH2CH2.

Было также доказано, что криптанды можно приспособить и для «захватывания» уже не катионов, а анионов.

Химия «хозяин – гость»

Открытие краун-эфиров стимулировало огромную армию химиков-органиков на новые исследования подобного же рода. Была проявлена уйма изобретательности, чтобы придать ожидающей «гостя» внутренней полости макроциклической молекулы-«хозяина» большую организованность и ёмкость.

Ход рассуждений учёных был примерно таков. Если уподобить краун-эфир молекуле-«тарелке», то почему бы не получить ещё, образно выражаясь, молекулы-«чашки», молекулы-«пиалы», молекулы-«кувшины» и прочие мыслимые ёмкости? Ведь тогда «гость», возможно, чувствовал бы себя в них гораздо удобнее.

Концепцию «хозяин — гость» можно иллюстрировать такой простенькой схемой. Маленький «гость» и крупный «хозяин» с полостью, готовой принять «гостя». «Гость» прочно удерживается с помощью слабых, нековалентных сил.

Концепцию «хозяин — гость» можно иллюстрировать такой простенькой схемой. Маленький «гость» и крупный «хозяин» с полостью, готовой принять «гостя». «Гость» прочно удерживается с помощью слабых, нековалентных сил.

Так постепенно начала оформляться и претворяться в жизнь идея того, что теперь называется «контейнерная химия». Со времени первой публикации Чарльза Педерсена прошли четыре десятка лет. За это время получены сотни и тысячи новых искусственных ионофоров и их аналогов. Появляются всё более и более сложные структуры. Они подчас имеют замысловатые имена: «корзины», «щётки», «осьминоги». Номенклатура этих диковинных соединений крайне сложна и пока ещё недостаточно разработана. Синтезированное химиками-органиками новое множество хитроумных органических молекул имеет огромное поле применения на практике.

***

Контейнерную химию – в жизнь!

Наука. Соединения, способные образовывать комплексы типа «хозяин — гость» с органическими молекулами, нужны для разделения и очистки органических веществ, их активации и решения множества других научных задач. Сейчас химики-органики пытаются синтезировать «хозяев» для сульфаниламидов, катехоламинов, аминокислот, пептидов, пуриновых и пиримидиновых оснований. И тут возникает возможность создавать лекарственные препараты новых поколений.

Техника. Разрабатываются процессы извлечения ценных цветных и редких металлов из сточных вод промышленных предприятий.

Большая перспектива в использовании краун-соединений открылась в области разделения изотопов. Например, можно отделить кальций-40 от кальция-44, разделить натрий-23 и натрий-24, литий-6 и литий-7, изотопы радиоактивных элементов. Это может иметь огромное значение для создания будущих реакторов термоядерного синтеза.

Синтетические ионофоры широко используют в буровой технике для ликвидации в нефтепроводах пробок, вызванных применением в буровом растворе практически нерастворимого сульфата бария.

На основе краун-соединений созданы специальные противокоррозионные присадки, значительно продлевающие срок службы масел и улучшающие их эксплуатационные свойства.

Иммобилизованные (прикреплённые к подложке-носителю) краун-эфиры являются прекрасными промышленными катализаторами для самых разных химических реакций.

Сельское хозяйство. В животноводстве созданы эффективные добавки к кормам, которые регулируют обмен ионов и, таким образом, значительно улучшают усвоение корма животными. Это, в частности, экономит значительное количество корма для скота.

Некоторые синтезированные ионофоры оказались мощными пестицидами, очень специфичными (то есть действующими избирательно — только на ту или иную мишень) и не загрязняющими окружающую среду.

Медицина. Крауны можно применять как средства для лечения болезней, вызванных избытком или недостатком в организме ионов того или иного металла.

Краун-соединения становятся действенным инструментом регулирования процессов переноса металлов через биологические мембраны. Это создаёт основу и для разработки лекарственных препаратов, направленных на борьбу с заболеваниями, вызванными избытком тяжёлых металлов в организме, или для выведения из организма опасных радиоактивных ионов, таких как цезий -137.

Обсудите в соцсетях

Главные новости

17:57 Во Франции посадили в тюрьму 19-летнего парня, который угрожал преподавателю убийством
17:01 В Индонезии освободили соратника Тесака. Его задерживали по запросу российских спецслужб
16:37 Pussy Riot привязали переодетого омоновцем художника к столбу у Кремля в рамках акции против полицейского насилия
16:03 На Урале застрелили замглавы Новоуральска Михаила Черницкого
15:48 Машина с полицейскими влетела в грузовик во Владимирской области, все пассажиры погибли
15:23 В Хабаровске прошла 141 подряд акция в поддержку Фургала. Администрация уверяла, что митинги по выходным кончились
14:47 Роскомнадзор попросил отечественные IT-компании создать аналог YouTube
14:16 Дзюбе вернули капитанскую повязку — впервые после публикации его интимного видео
12:47 Кудрин: число бедных в России увеличится на 1 млн по итогам 2020 года
12:04 В Москве задержали участниц пикета против домашнего насилия. Их держат в автозаке более 10 часов
11:19 Умер клавишник группы «Дюна» Андрей Апухтин
10:42 В России второй день подряд зарегистрировали более 27 тыс. новых случаев COVID-19
10:23 Во всем мире коронавирусом заразились более 61 млн человек
09:54 1 млн жителей России получили штрафы за нарушение коронавирусных ограничений
09:32 В Аргентине начато расследование смерти Марадоны. Медсестру подозревают в халатности
27.11 21:54 Глава нижегородского Минздрава попросил помощи у врачей из частных клиник
27.11 21:19 В Московской области продлили самоизоляцию для пожилых, «дистант» для студентов и запрет массовых мероприятий
27.11 20:37 Суд отправил под домашний арест еще троих лидеров «Свидетелей Иеговы»
27.11 19:47 Глава Минздрава заявил, что переболевших COVID-19 тоже необходимо вакцинировать
27.11 19:12 В Иране убили ведущего физика-ядерщика страны Мохсена Фахризаде
27.11 18:50 ГИБДД: плохие дороги стали причиной каждого третьего ДТП с пострадавшими в октябре и ноябре
27.11 17:53 Reuters: хакеры из КНДР пытались украсть данные о вакцине AstraZeneca и Оксфордского университета
27.11 17:32 Минздрав заявил о повторных случаях инфицирования коронавирусом в России
27.11 17:09 На севере Подмосковья объявился медведь-шатун. Специалисты говорят об эффекте самоизоляции
27.11 16:54 Суд оштрафовал Навального на 5 тыс. рублей за отказ удалить расследование про Пригожина
27.11 16:41 В Петербурге оппозиционного депутата хотят лишить мандата из-за незадекларированных 705 рублей
27.11 16:24 В российской армии началась вакцинация от COVID-19. Минобороны планирует привить 400 тыс. военных
27.11 15:57 «Победа» с декабря возобновит рейсы в Кельн и Берлин
27.11 15:55 Навальный выступил перед членами Европарламента и призвал к санкциям против олигархов из России
27.11 15:36 Суд арестовал бывшего замначальника ФСИН Валерия Максименко
27.11 15:34 В Дании газету оштрафовали за карикатуру на памятник Русалочке
27.11 15:00 В России появился единый телефонный номер 122 для вызова врача к больному COVID-19
27.11 14:52 Учитель, которого избил ученик в Нальчике, доставлен в больницу. СК завел уголовное дело
27.11 14:33 Журналист Алексей Пивоваров заболел ковидом через два месяца после прививки
27.11 14:08 В Орле из газетных киосков изъяли почтовые марки с портретом Гитлера
27.11 14:00 В Курске умер ветеран ГАИ Михаил Панкрушев. В 1989 году он спас от гибели 40 американских детей
27.11 13:36 «Были приняты необходимые меры»: Песков попытался объяснить отсутствие масок у встречающих Путина в Сарове
27.11 13:11 В Нальчике школьный учитель открыл огонь из травматического пистолета. У него произошел конфликт с восьмиклассником, его дядей и их знакомым
27.11 13:07 Фигуранту «московского дела» Эдуарду Малышевскому отказали в УДО
27.11 12:41 «Вектор» планирует начать массовую вакцинацию от COVID-19 в 2021 году
27.11 12:40 Австрийская деревня Фуккинг (Fucking) решила сменить название из-за туристов
27.11 12:00 Русское географическое общество приглашает в «Снежный дозор»
27.11 11:59 Путин проведет ежегодную пресс-конференцию 17 декабря. Она пройдет в формате видеоконференции
27.11 11:47 Опрос: программисты, финансисты и строители хотели бы пенсию больше 100 тыс. рублей
27.11 11:34 Facebook планирует запустить в обращение криптовалюту Libra в январе 2021 года
27.11 11:00 Forbes составил список самых высокооплачиваемых профессий в России
27.11 10:55 В России новый антирекорд коронавирусной статистики. За сутки ковидом заболели 27,5 тыс. человек
27.11 10:30 Ареал обитания утконоса сократился на 22 %
27.11 09:50 Диего Марадону похоронили на кладбище под Буэнос-Айресом. Церемонию прощания завершили досрочно из-за беспорядков
27.11 09:32 Росавиация предложила уволить руководство «Победы» из-за акции в поддержку Дзюбы
«АвтоВАЗ» «ВКонтакте» «Газпром» «Зенит» «Мемориал» «Мистраль» «Оборонсервис» «Роснефть» «Спартак» «Яблоко» Абхазия Австралия Австрия Азербайджан Антимайдан Аргентина Арктика Армения Афганистан Аэрофлот Башкирия Белоруссия Бельгия Болгария Бразилия ВВП ВКС ВМФ ВПК ВТБ ВЦИОМ Ватикан Великобритания Венгрия Венесуэла Владивосток Внуково Волгоград ГИБДД ГЛОНАСС Генпрокуратура Германия Голливуд Госдеп Госдума Греция Гринпис Грузия ДТП Дагестан Дания Домодедово Донецк ЕГЭ ЕСПЧ Евровидение Еврокомиссия Евромайдан Евросоюз Египет Екатеринбург ЖКХ Израиль Ингушетия Индия Индонезия Интерпол Ирак Иран Испания Италия Йемен КНДР КПРФ Казань Казахстан Калининград Камчатка Канада Каталония Кемерово Киев Кипр Киргизия Китай Коми Конституция Красноярск Кремль Крым Куба Курилы ЛГБТ ЛДПР Латвия Ливия Литва Лондон Луганск МВД МВФ МГУ МКС МОК МЧС Малайзия Мексика Минздрав Минкульт Минобороны Минобрнауки Минпромторг Минсельхоз Минск Минтранспорта Минтруд Минфин Минцифры Минэкономразвития Минэнерго Минюст Молдавия Мосгордума Мосгорсуд Москва НАСА Нигерия Нидерланды Новосибирск Норвегия ОБСЕ ООН ОПЕК Одесса Омск ПДД Пакистан Паралимпиада Париж Пентагон Польша Приморье РАН РЖД РПЦ РФС Росавиация Росгвардия Роскомнадзор Роскосмос Роспотребнадзор Россельхознадзор Россия Росстат Ростех Ростуризм СМИ СССР США Сахалин Сбербанк Севастополь Сербия Сирия Сколково Славянск Сочи Таджикистан Таиланд Татарстан Трансаэро Турция УЕФА Узбекистан Украина ФАС ФБР ФИФА ФСБ ФСИН ФСКН Филиппины Финляндия Франция Хакасия Харьков ЦИК ЦРУ ЦСКА Центробанк Чехия Чечня Швейцария Швеция Шереметьево Эбола Эстония ЮКОС Якутия Яндекс Япония авиакатастрофа автопром алкоголь амнистия арест армия археология астрономия аукционы бактерии банкротство беженцы безработица бензин беспилотник беспорядки биатлон бизнес благотворительность блогосфера бокс болельщики вандализм взрыв взятка вирусы вузы выборы гаджеты генетика гомосексуализм госбюджет госзакупки госизмена деньги дети доллар допинг драка евро журналисты законотворчество здоровье землетрясение изнасилование импорт инвестиции инновации интернет инфляция ипотека искусство ислам исследования история казнь кино кораблекрушение коронавирус коррупция космос кража кредиты культура лингвистика литература математика медиа медицина метро мигранты монархия мошенничество музыка наводнение налоги нанотехнологии наркотики наука недвижимость нейробиология некролог нефть образование обрушение общество ограбление оппозиция опросы оружие офшор палеонтология педофилия пенсия пиратство планетология погранвойска пожар полиция похищение правительство право православие преступность продовольствие происшествия ракета рейтинги реклама религия ретейл робототехника рубль санкции связь сепаратизм следствие смартфоны смертность социология спецслужбы спутники статистика страхование стрельба строительство суды суицид тарифы театр телевидение теракт терроризм технологии транспорт туризм убийство фармакология физика фоторепортаж футбол хакеры химия хоккей хулиганство цензура школа шпионаж экология экономика экспорт экстремизм этология «Единая Россия» «Исламское государство» «Нафтогаз Украины» «Правый сектор» «Северный поток» «Справедливая Россия» «болотное дело» Александр Лукашенко Александр Новак Александр Турчинов Алексей Кудрин Алексей Навальный Алексей Улюкаев Алтайский край Амурская область Анатолий Сердюков Ангела Меркель Антон Силуанов Аркадий Дворкович Арсений Яценюк Астраханская область Барак Обама Басманный суд Башар Асад Белый дом Борис Немцов Бутовский полигон Валентина Матвиенко Верховная Рада Верховный суд Виктор Янукович Виталий Мутко Владимир Жириновский Владимир Зеленский Владимир Маркин Владимир Мединский Владимир Путин Вячеслав Володин Дальний Восток День Победы Дмитрий Медведев Дмитрий Песков Дмитрий Рогозин Дональд Трамп Евгения Васильева Забайкальский край Интервью ученых Ирина Яровая Иркутская область История человечества Калужская область Кирилл Серебренников Кировская область Конституционный суд Космодром Байконур Краснодарский край Красноярский край Ксения Собчак Ленинградская область МИД России Мария Захарова Михаил Прохоров Михаил Саакашвили Михаил Ходорковский Московская область Мурманская область Надежда Савченко Наталья Поклонская Нижний Новгород Николас Мадуро Нобелевская премия Новосибирская область Новый год Олег Дерипаска Олимпийские игры Ольга Голодец Павел Дуров Палестинская автономия Папа Римский Первый канал Пермский край Петр Порошенко Почта России Приморский край Рамзан Кадыров Реджеп Эрдоган Республика Карелия Ростовская область Саратовская область Саудовская Аравия Свердловская область Сергей Лавров Сергей Нарышкин Сергей Полонский Сергей Собянин Сергей Шойгу Следственный комитет Совбез ООН Совет Федерации Ставропольский край Счетная палата Тереза Мэй Франсуа Олланд Хабаровский край Хиллари Клинтон Человек дня Челябинская область Черное море Эдвард Сноуден Элла Памфилова Эльвира Набиуллина Эммануэль Макрон Южная Корея Юлия Тимошенко Юрий Чайка авторское право администрация президента акции протеста атомная энергия баллистические ракеты банковский сектор биология большой теннис визовый режим военная авиация выборы губернаторов газовая промышленность гражданская авиация гуманитарная помощь декларации чиновников дороги России информационные технологии климат Земли компьютерная безопасность космодром Восточный крушение вертолета легкая атлетика лесные пожары междисциплинарные исследования мобильные приложения морской транспорт некоммерческие организации общественный транспорт патриарх Кирилл пенсионная реформа пищевая промышленность права человека правозащитное движение преступления полицейских публичные лекции российское гражданство русские националисты русский язык сельское хозяйство сотовая связь социальные сети стихийные бедствия телефонный терроризм уголовный кодекс фигурное катание финансовый рынок фондовая биржа химическое оружие хроники обнуления эволюция экономический кризис ядерное оружие Великая Отечественная война Вторая мировая война Ирак после войны Ким Чен Ын Революция в Киргизии Российская академия наук Стихотворения на случай Федеральная миграционная служба Федеральная таможенная служба борьба с курением выборы мэра Москвы здравоохранение в России связь и телекоммуникации тюрьмы и колонии Совет по правам человека аварии на железной дороге естественные и точные науки закон об «иностранных агентах» компьютеры и программное обеспечение видеозаписи публичных лекций «Полит.ру» Новые технологии, инновации Сочи 2014 рейтинг Forbes Аль-Каида Кабардино-Балкария Левада-Центр Нью-Йорк Санкт-Петербург отставки-назначения шоу-бизнес Ростов-на-Дону ЧМ-2018 Книга. Знание ВИЧ/СПИД Путин20летназад новость20летназад Apple Bitcoin Boeing Facebook G20 Google iPhone IT Microsoft NATO PRO SCIENCE видео ProScience Театр Pussy Riot Telegram Twitter Wikileaks YouTube

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.