26 июня 2019, среда, 12:50
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Полимеры и нанотехнологии

Структуры сополимеров
Структуры сополимеров
Wikimedia Commons
 
Партнер проекта

10 октября в рамках проекта «Публичные лекции "Полит.ру"» доктор физ.-мат. наук, академик РАН, профессор МГУ, проректор, начальник Управления инновационной политики и международных научных связей МГУ, председатель Совета по науке при Министерстве образования и науки РФ Алексей Ремович Хохлов прочитал лекцию на тему: «Полимеры в контексте "нано"».

 

До рубежа XIX – XX веков наука изучала лишь объекты, который человек может увидеть (невооруженным глазом или с помощью оптических приборов), то есть такие объекты, размер которых больше, чем длина световой волны (400 – 700 нм). Затем в сферу внимание науки попали и объекты микромира: сначала атомы, потом элементарные частицы, размер которых менее одного нанометра. Диапазон от 1 до приблизительно 500 нанометров долго оставался обойден вниманием.

Между тем этот диапазон очень важен. На этом уровне осуществляются все молекулярные механизмы, которые лежат в основе жизни. Структура веществ на наноуровне определяет их свойства. Хотим ли мы узнать, как работает катализатор химической реакции или как происходит перенос нервного импульса в синапсе, без обращения к наномасштабу нам не обойтись.

С развитием миниатюризации в производстве микросхем появилось и понятие нанотехнологий, которое сейчас распространилось далеко за пределы этой конкретной области. Особое место нанотехнологий объясняется тем, что многие обычные технологии уже трудноприменимы к нанообъектам. Однако на этом уровне устройства веществ становится возможным использовать принципиально новые методы, например, способность молекул к самоорганизации, когда они за счет взаимодействия между различными частями молекул (например, в результате действия ван-дер-ваальсовых сил) или просто за счет теплового движения образуют упорядоченные структуры. Именно такая самоорганизация материи позволяет возникать структурам в клетках живых организмов. В клетках синтезируются молекулы ДНК и РНК, различные белки и так далее. А. Р. Хохлов привел впечатляющий пример: если представить себе совокупную длину молекул ДНК, которые синтезируются в человеческом организме за время жизни человека, и выстроить в одну линию, то их общая длина составит два световых года. Пока еще никакие созданные человеком системы синтеза не могут сравниться с “простой” живой клеткой.

В связи с этим возник биомиметический метод, в котором молекулярное устройство живых систем становится образцом для тех систем, которые создают люди. И эти биологические молекулы, функционирование которых мы хотели бы использовать, представляют собой полимеры. Напомним, что полимеры – это вещества, молекулы которых состоят из большого числа повторяющихся звеньев (мономеров). Вот примеры двух широко известных полимерных соединений:

Полиэтилен

…—CH2—CH2—CH2—CH2—…

Поливинилхлорид

…— CH2—CHCl—CH2—CHCl—CH2—CHCl—CH2—CHCl—…

Мы видим, что у полиэтилена мономером является группа CH2, а у поливинилхлорида – CH2—CHCl. Молекулы полимеров называют макромолекулами. У синтетических полимеров число звеньев в полимерной цепи обычно от 10 до 10000. У природных веществ оно может быть значительно больше. Молекула ДНК, например, может состоять из 109 – 1010 нуклеотидов. Использование природой полимеров обусловлено рядом их свойств, которые, в свою очередь, вызваны их строением.

Важнейшие черты полимеров: длинные цепи из звеньев-мономеров, большое количество этих звеньев и гибкость цепей. Поскольку макромолекулы представляют собой длинные цепи, у отдельных мономеров нет свободы независимого движения, а значит в полимерных системах ниже энтропия. Это и обуславливает способность полимерных систем к самоорганизации. Даже небольшое энергетическое взаимодействие между группами атомов приводит к упорядочению в их расположении.

Такая самоорганизация возникает, например, в материалах, которые состоят из молекул блок-сополимеров. Блок-сополимер – это разные полимерные цепочки, соединенные между собой в одну при помощи ковалентной химической связи. В простейшем случае блок-сополимер объединяет две разные цепочки, но их может быть и больше, форма их соединения может быть самой разнообразной. Если мы возьмем блок-сополимер, две компоненты которого стремятся отклониться друг от друга (опять-таки за счет ван-дер-ваальсового взаимодействия), то полностью расслоиться они не смогут, ведь компоненты молекулы соединены ковалентной связью. Однако это отталкивание приведет к тому, что цепочки макромолекул сориентируются в пространстве, в результате в материале возникнет структура. В зависимости от относительной длины двух компонентов блок-сополимера это могут быть сферы из одного компонента, окруженные другим, или цилиндры, или слои и так далее. Поэтому, просто синтезируя блок-сополимерные макромолекулы с разным соотношением длин, можно проводить дизайн полимерных наноструктур.

Это находит практическое применение. Одно из таких применений – создание термопластичных эластомеров. Например, берется блок-сополимер, компоненты которого – это полиизопрен и полистерол. Полиизорен – это каучук, полистирол – полимер, который при комнатной температуре твердеет. Соединив их в нужной пропорции, мы можем получить материал, в котором на наноуровне в резиновой массе будут сферические включения полистирола. Если поднять температуру, полистирол расплавится, и этой резине можно будет придать новую форму.

Алексей Хохлов рассказал и о применение расслоения блок-сополимеров при создании ультратонких наноструктурированных пленок. Если цепочки одной из макромолекул, входящих в блок-сополимер, образуют в нем слои или цилиндры, то у них может быть разное пространственное расположение. Цилиндры могут быть ориентированы перпендикулярно поверхности пленки, а могут – параллельно. В зависимость от этого пленка может иметь разные свойства, например, “позволять” или “не позволять” другим молекулам диффундировать сквозь себя. А. Р. Хохлов описал, предложенный им и его коллегами метод, позволяющий обеспечить нужную наноструктуру в пленке. Выяснилось, что для этого нужно, чтобы подложка, на которой образуется пленка, сама была наноструктурированной. На ней должны быть участки, которые по-разному притягивают компоненты блок-сополимера.

Другой пример использование наноструктур в полимерах – топливные элементы. Это электрохимические устройства, которые преобразуют химическую энергию в электрическую. Топливом для такого элемента служит, например, водород. Молекулы водорода подаются на анод, там они расщепляются при помощи платинового катализатора. Протоны через полимерную мембрану отправляются к катоду, а электроны мембрана не пропускает, поэтому они идут во внешнюю цепь и в ней возникает ток. На катоде в результате соединения электронов, протонов, прошедших сквозь мембрану и кислорода воздуха получается вода. Пока такие топливные элементы используются в космических и военных технологиях, но со временем, когда этот способ производства энергии станет окупаться, они могут заменить привычные нам бензиновые двигатели. Важный плюс топливных элементов – экологическая чистота. Полимерные наноструктуры используются в ключевой детали топливного элемента – мембране, которая проводит протоны.

О других примерах использования полимеров в нанотехнологии можно узнать из видеозаписи лекции.

Обсудите в соцсетях

Система Orphus
«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Металлургия Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология комета кометы компаративистика космос культура лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство школа экология эпидемии эпидемиология этология язык Александр Беглов Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса глобальное потепление грипп информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2019.