28 июля 2021, среда, 15:09
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

03 августа 2017, 14:32

Композиты, графен и математическое моделирование

Графен под сканирующим зондовым микроскопом
Графен под сканирующим зондовым микроскопом

Ученые из Института математических проблем биологии РАН смоделировали изменение пьезоэлектрических свойств нового композитного материала с графеном. Моделирование позволило предположить дальнейшее направление экспериментальных исследований. Работа опубликована в Journal of Molecular Modeling, кратко о ней сообщается в пресс-релизе института.

В последние годы значительный интерес вызывают новые материалы с низкой плотностью, хорошей эластичностью, большой пьезоэлектрической и пироэлектрической активностью. Особое внимание уделяется созданию композиционных материалов на основе полимеров и наноструктур углерода (графена, углеродных нанотрубок), поскольку они должны обладать необычными электрическими и механическими свойствами. Подобные материалы используются в различных пьезодатчиках и пьезосенсорах. Сейчас им находят и новые инновационные применения, например, делают разные устройства по выработке электроэнергии, одно из них – пьезогенераторы в подошве обуви – человек ходит и при этом вырабатывает электричество.

Исследователи из Московского института электронной техники под руководством Игоря Бдикина и Максима Силибина провели ряд экспериментов по созданию нового пьезоактивного органического материала, который потенциально может быть использован в датчиках давления, в пироэлектрических матрицах для гражданского и военного применения. Основная цель исследований заключалась в увеличении пьезоэлектрических свойств гибких полимерных композитов, за счет добавления графена и оксида графена. Ученые сделали композитную тонкую пленку сополимера поливинилиденфторида (ПВДФ) и политрифторэтилена (ПТФЭ) с добавлением графена и оксида графена (GO). Однако в эксперименте вместо ожидаемого увеличения, они получили уменьшение значения пьезоэлектрического коэффициента. Группа компьютерного моделирования наноструктур Института математических проблем биологии РАН под руководством Владимира Быстрова смогла построить модель процесса, не только подтверждающую результаты эксперимента, но и задающую направление дальнейшего исследования материала.

Модель пьезоэффекта

Пьезоэлектриками называются вещества, в которых при приложении механических напряжений возникает электрическая поляризация даже в отсутствие электрического поля. Это явление называется прямым пьезоэффектом. Связано это с упругим смещением электрических зарядов в молекулярной структуре вещества под действием внешних механических сил. Наряду с прямым пьезоэффектом существует обратный пьезоэффект, заключающийся в возникновении механических деформаций под действием приложенного к пьезоэлектрику электрического поля.

Композиты на основе поливинилиденфторида (ПВДФ) характеризуются высокими пьезоэлектрическими коэффициентами по сравнению с другими полимерными материалами. Исследователи ожидали, что графеновые частицы, встроенные в полимерную матрицу, обеспечат большую электромеханическую и пироэлектрическую активность. Но эксперимент показал обратное.

Моделирование и вычислительные исследования композита позволили детально изучить механизмы изменения пьезоэффекта при добавлении графена к полимеру. Структуры были исследованы с использованием пакета программ HyperChem.

Для начала была построена модель молекулярной цепи ПВДФ и ее поведения в электрическом поле. Результаты вычислений пьезоэлектрических коэффициентов при различном напряжении совпали с экспериментальными данными.

Владимир Быстров поясняет: «Молекулярная структура всегда стремится занять состояние энергетического минимума. Программа HyperChem позволяет находить это состояние. Затем на цепочку полимера накладывается имитация электрического поля и наблюдается как деформируется цепочка. Без поля выгодно одно расположение, в поле другое. По изменению высоты расположения молекул цепочки можно вычислить пьезоэлектрический коэффициент».

Цепочка полимера состоит из атомов водорода, углерода и фтора. Поскольку водород и фтор образуют диполь, имеющий заряды равные по величине и противоположных по знаку, между ними возникает дипольный момент направленный перпендикулярно цепочке. Сначала в модели нашли оптимальную конфигурацию без внешнего электрического поля, определили начальные оптимальные высоты (h1 и h2 на рис. b) цепи ПВДФ в ее центральной области. После этого приложили электрическое поле и нашли оптимальную геометрию под действием электрического поля: цепочка сжалась и растянулась. В результате сравнения (рис. с) новых оптимизированных параметров (h1 и h2) с их начальными значениями (h10 и h20) получили значения деформации цепи и вычислили пьезокоэффициент.

Добавляем графен

Далее была построена модель с добавлением графена. Были проведены расчеты для самой простой решетки с 54 атомами углерода (Gr54) и расположенными с разных сторон цепочками полимера. Программа нашла оптимальное расстояние между слоями, оно оказалось около 4 ангстремов и рассчитала пьезокоэффициент при наложении электрического поля. Действительно, при добавлении графена пьезоэффект, согласно расчетам, уменьшался.

Поскольку в эксперименте использовался не чистый графен, а оксид графена, то ученые рассмотрели более сложные решетки, с группами OH, COOH и атомами азота, которые, как правило, входят в состав оксида графена после его синтеза. Таким образом, были построены еще несколько простых моделей для системы ПВДФ /оксид графена и вычислены их пьезоэлектрические коэффициенты по тем же алгоритмам.

Пьезоэлектрические коэффициенты, рассчитанные для модели Gr54 / ПВДФ, оказались примерно в три раза ниже, чем для чистой ПВДФ-цепи. Присутствие слоя графена снижает значение пьезокоэффициента, что и наблюдалось в экспериментах.

Владимир Быстров прокомментировал: «Первоначально в цепи ПВДФ присутствуют диполи и есть электрически индуцированные диполи в слое графена. Таким образом, слой графена экранирует диполи цепи ПВДФ от влияния электрического поля. Когда состав оксида графена или его ориентация относительно цепи ПВДФ изменяются, пьезоэлектрический коэффициент также изменяется, но основная тенденция остается той же.  Интересно, что угол поворота решетки в своей плоскости влияет на величину пьезоэлектрического коэффициента».

Делаем сэндвичи

Исследователи провели расчеты еще по одному типу моделей – сэндвич. Он содержал слои оксида графена с обеих сторон цепи ПВДФ. В этой модели пьезокоэффициент получился более высоким.

В эксперименте графен присутствовал в ПВДФ в 1% концентрации, в виде отдельных фрагментов. Полученные результаты соответствовали первой модели, в которой ПВДФ взаимодействует только с GO на одной стороне цепи. Это уменьшает пьезоэлектрический коэффициент. В среднем композит неоднородный, поэтому точного совпадения между экспериментом и моделью нет, но общая тенденция изменений отслеживается верно.

При увеличении концентрации GO свыше 1% в композите начинают образовываться сэндвич-кластеры. Эти кластеры, скорее всего, похожи на описанную выше модель сэндвича.  Таким образом можно сказать, что в композитах возникают два основных типа порядка: два слоя, такие как ПВДФ / GO и три слоя, такие как сэндвич GO / ПВДФ / GO. Было обнаружено, что двухслойная структура ПВДФ / GO приводит к уменьшению пьезокоэффициента, тогда как структура сэндвича GO / ПВДФ / GO дает усиленный пьезоэлектрический отклик.

Владимир Быстров: «Для меня и для экспериментаторов было неожиданно, что самый простейший модельный подход позволил увидеть направление поведения этой структуры. При увеличении количества слоев в модели коэффициент начал возрастать - следовательно в дальнейших экспериментах необходимо подробно исследовать различные взаимные ориентации, различное число слоев и изменения порядка слоев GO и ПВДФ. Если бы экспериментаторы создали нанокомпозит в технике нанесения молекулярных слоев методом Ленгмюр-Блоджетт – получаемая структура была бы значительно более упорядоченная и модель более адекватно ее описывала. Подобные методы разработаны в Институте Кристаллографии под руководством профессора Владимира Фридкина. Надеюсь, это дело ближайшего будущего – применить их здесь».

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астронавты астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги виноделие вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы малярия мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники средневековье старение старообрядцы стартапы статистика табак такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция темная материя физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2021.