16 декабря 2019, понедельник, 16:28
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Невозможный сверхпроводник — супергидрид церия

«Невозможный» супергидрид церия
«Невозможный» супергидрид церия
Дизайнер: @tsarcyanide, пресс-служба МФТИ

Исследователи из США, России и Китая синтезировали запрещенное классической химией соединение водорода и церия, СеH9, которое демонстрирует сверхпроводимость при сравнительно низком давлении в 1 миллион атмосфер. Работа опубликована в журнале Nature Communications, кратко о ее результатах сообщает пресс-релиз Московского физико-технического института и Сколтеха.

Материалы, способные проводить ток без сопротивления, называются сверхпроводниками и лежат в основе мощных электромагнитов, например, тех, что ускоряют частицы на Большом адронном коллайдере. Недостаток известных на сегодня сверхпроводников в том, что они сохраняют свои свойства лишь при очень низких температурах и высоких давлениях. Это ограничивает круг возможных приложений и делает существующие сверхпроводниковые технологии дорогими. Открытие сверхпроводников, работающих при нормальных условиях, позволило бы передавать электроэнергию по ЛЭП без потерь, удешевить медицинские томографы и поезда на магнитной подушке.

Считается, что при чрезвычайно сильном сжатии водород должен стать твердым металлом. Причем ученые считают, что такая форма водорода может демонстрировать сверхпроводимость при комнатной температуре. К сожалению, металлизация чистого водорода требует колоссального давления, около 5 млн атмосфер. Для сравнения, давление в центре Земли составляет 3,6 млн атмосфер.

«Поэтому материаловеды идут по другому пути: синтезируются так называемые запрещенные соединения разных элементов — например, лантана, серы или церия — и водорода, с повышенным содержанием последнего. Скажем, классическая химия предусматривает вещества с формулами CeH2 и CeH3. Мы же "упаковываем" в супергидрид церия еще больше атомов водорода и получаем соединение CeH9», — поясняет автор исследования Артём Оганов, профессор Сколтеха и Московского физико-технического института.

«Хотя сверхпроводящие свойства супергидрида церия проявляются только при охлаждении до −200 градусов Цельсия, этот материал интересен тем, что стабилен при более низком давлении (1 млн атмосфер), чем полученные ранее супергидриды серы и лантана. С другой стороны, супергидрид урана UH7, который мы с коллегами предсказали и получили в прошлом году, стабилен при еще более низком давлении (0,2 млн атмосфер), зато он требует большего охлаждения (−219 °C)», — рассказывает соавтор работы Иван Круглов, научный сотрудник лаборатории компьютерного дизайна материалов МФТИ и Всероссийского НИИ автоматики им. Н. Л. Духова.

Чтобы получить супергидрид церия, ученые поместили в камеру с алмазными наковальнями микроскопический образец металла церия и вещество, выделяющее при нагревании газообразный водород. Для проведения реакции этот образец сжимали между двумя плоскими алмазами, достигая необходимого давления. При этом содержащий водород реагент нагревался лазером. По мере увеличения давления в камере образовывались гидриды церия со всё большим содержанием водорода: CeH2, CeH3 и т. д. Наконец, продуктом реакции становился супергидрид церия CeH9. По словам авторов исследования, все соединения подобного рода нестабильны при снижении давления.

Чтобы прояснить структуру нового вещества, ученые использовали рентгенодифракционный анализ, чувствительный к расположению атомов церия. В кристаллической решетке CeH9 (см. рисунок) каждый из этих атомов окружен своего рода сферической клеткой из 29 атомов водорода. При этом атомы водорода связаны между собой ковалентными связями — как в молекуле газообразного водорода H2, но несколько слабее — а атомы церия занимают предоставленные им полости.

Кристаллическая структура полученного авторами исследования «запрещенного» соединения — супергидрида церия, CeH9. Атомы церия показаны в виде красных сфер. Черным показаны атомы водорода и химические связи между ними. Изображение: Иван Круглов, МФТИ и ВНИИА им. Духова

Благодаря появлению методов компьютерного предсказания запрещенных соединений, таких как разработанный профессором Сколтеха и МФТИ Артёмом Огановым алгоритм USPEX, ученые уже досконально изучили почти все гидриды отдельных металлов. Следующий шаг — добавить еще один химический элемент. Науке почти ничего не известно о свойствах тройных соединений, где помимо водорода присутствуют атомы сразу двух металлов. Поскольку вариантов таких соединений очень много, исследователи планируют использовать алгоритмы искусственного интеллекта для отбора самых перспективных тройных систем.

Обсудите в соцсетях

Система Orphus
«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология клонирование комары комета кометы компаративистика космос культура лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса глобальное потепление грипп защита растений информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2019.