2 декабря 2020, среда, 22:28
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Моделирование эпидемий: модель SIR

Простейшая SIR-модель. Уязвимые, заразившиеся и выздоровевшие.
Простейшая SIR-модель. Уязвимые, заразившиеся и выздоровевшие.
wikimedia

Социологи питерской Вышки — студенты и преподаватели — ведут наукометрический блог Pandemic Science Maps. В нем публикуются обзоры и подборки литературы и препринтов о коронавирусе и текущей пандемии, а также рекомендуются важные статьи из смежных областей.

Наукометрия обычно упоминается в связи с оценкой цитируемости, но базы Web of Science и Scopus ученые всего мира используют не для этого, а для информационного поиска. По итогам такого поиска строятся карты науки — наглядное отражение того, как устроены исследовательские области, и какие работы в них центральные. Блог Pandemic Science Maps показывает, как устроена наука об эпидемиях в отдельных ее разделах. Редакторы блога — Даниил Александров и Алла Лосева.

Представьте, как начинается эпидемия в полностью уязвимой среде. Пятеро человек внезапно заболевают, и при контакте со здоровыми людьми передают вирус им. Если заразившиеся и здоровые свободно общаются, вскоре заболеют вообще все члены этого сообщества.

Мы могли бы представить, что вначале заболели не пятеро, а сто человек. Или что половина заболевших ни с кем ни контактируют. И в том, и в другом случае эпидемия распространилась бы или быстрее, или медленнее, а может, и вовсе бы остановилась.

Говоря, что население делится на две группы — здоровых и больных, —– мы создаём модель общества, то есть представляем его упрощённо. В нашем примере, пожалуй, даже вульгарно, ведь люди не остаются заболевшими навечно — если болезнь не смертельная, через какое-то время они выздоравливают. В более правдоподобной модели есть третья группа людей: те, кто поправился. Они отличаются от здоровых тем, что при контакте с заразившимся человеком они не заболеют снова, так как против этой болезни у них уже появился иммунитет.

Модели, в которых общество делится на группы, или классы, называются камерными (compartmental) и широко используются в эпидемиологии. Наша модель — одна из простейших таких моделей. Она называется

модель SIR, где S значит уязвимый, то есть без иммунитета к болезни (susceptible), I — заразившийся и распространяющий вирус (infectious), R — выздоровевший и получивший иммунитет, хотя бы временный (recovered). Между этими классами люди перемещаются последовательно:
S → I → R.
Эта последовательность — жёсткая закономерность, поэтому SIR относится к детерминированным моделям.

Если исследователи знают число людей в каждом классе в любой момент времени, они могут предсказать распространение заболевания и длительность эпидемии. Вводя в модель новые элементы, можно демонстрировать и влияние внешних факторов: например, показать, как карантин и соблюдение дистанции снижают число заразившихся на пике эпидемии. (См. также подобные оценки на исторических данных об эпидемии «испанки» в 1918–1919 гг.)

Этим постом мы открываем серию материалов про моделирование эпидемий. Сегодня мы рассмотрим карту публикаций, в которых используется модель SIR, описанная выше.

Для обзора мы выполнили систематический поиск литературы в базе данных Scopus и построили карту публикаций на основе их списков литературы (см. иллюстрацию). Близость на карте и принадлежность к одному кластеру на этой карте означают, что публикации ссылаются на одни и те же работы — а значит, есть вероятность, что в статьях поднимаются схожие темы. Карта выполнена в программе VOSviewer.

Исследования, где применяется модель SIR, делятся на пять кластеров:

  • цвета морской волны, вверху: динамика в моделях SIR,
  • голубой, слева: глобальная устойчивость и влияние вакцинаций,
  • фиолетовый, в центре: детализированные модели SIR,
  • жёлтый, справа: социальные сети,
  • синий, внизу: бегущая волна.
 
Карта библиографического сходства публикаций, где используется модель SIR

Цвет присвоен узлам в соответствии с автоматически выделенными кластерами. Связи означают, что в библиографиях публикаций есть одинаковые документы. Близость на карте и принадлежность к одному кластеру отражают вероятность, что в работах поднимаются схожие темы. Размер узла соответствует количеству цитирования публикации по данным Scopus. На карте отображены только связанные друг с другом документы (N = 1000).

Описание кластеров

Кластер цвета морской волны: динамика в моделях SIR

Публикации этого кластера включают в модели временное измерение. Например, в самой заметной работе моделируется распространение кори в Великобритании (Bjørnstad, Finkenstädt, and Grenfell 2002). Перед тем, как начались массовые вакцинации, в крупных городах кто-то постоянно болел, и число заразившихся колебалось с определённой периодичностью. В поселениях поменьше периодически возникали вспышки кори, после которых вирус исчезал до новой вспышки. Исследователи воспроизвели эту динамику через модель, которая также отражала смену сезонов. Ход эпидемии был разбит на двухнедельные интервалы, поэтому свою модель авторы назвали TSIR, где T — это временные ряды (time-series). Было показано, что число заболевших пропорционально размеру поселения, а скорость передачи инфекции меняется в зависимости от сезона.

В целом кластер посвящён динамике эпидемий. Lloyd (2001) рассматривает, как меняются шансы на выздоровление с течением времени, прошедшего с момента заболевания. Tien and Earn (2010) вводят в модель дополнительный путь передачи инфекции (помимо прямого контакта заразившегося и уязвимого), причём со временем вероятность заразиться этим путём снижается.

В исследованиях также учитывается, как распространение эпидемии в пространстве и во времени зависит от сезона (Keeling, Rohani, and Grenfell 2001). Работы показывают не только динамику заражений, но и период после эпидемии (Stone, Olinky, and Huppert 2007).

Голубой кластер: глобальная устойчивость

Для динамической системы, такой как общество, глобальная устойчивость существует, если из любого текущего состояния системы она стремится вернуться в стабильное состояние. Допустим, сперва состояние системы было «нет заболевших, все здоровы», а с началом эпидемии это состояние меняется. Если после эпидемии общество возвращается к изначальной точке, эту точку считают глобально устойчивой. 

Работы голубого кластера исследуют этот феномен. К примеру, вспомним ситуацию, когда часть общества постоянно болеет определённой болезнью, и число заразившихся ею колеблется с некоторой периодичностью. Здесь глобальная устойчивость — не точка, в которой заболевших нет, а само колебание числа заболевших (Beretta and Takeuchi 1995; McCluskey 2010). Если возникают вспышки эпидемии, после них это число возвращается к прежней амплитуде колебаний. Как отмечают авторы, в отличие от других картин эпидемии эта ситуация настолько же глобально стабильна, как и полное отсутствие заболевших.

В некоторых публикациях показано, как глобальная устойчивость достигается циклической вакцинацией (pulse vaccination) — это стратегия, при которой группы риска постоянно вакцинируются до тех пор, пока распространение вируса не останавливается (d’Onofrio 2005; Stone, Shulgin, and Agur 2000). Согласно Shulgin, Stone, and Agur (1998), даже в системах со сложной динамикой при циклической вакцинации можно добиться полной победы над эпидемией.

Фиолетовый кластер: детализированные модели SIR

Статьи этого кластера адаптируют модель SIR к конкретным случаям, добавляя в модель важные характеристики общества и населения. Например, Dangbé et al. (2017) моделируют распространение холеры, и учитывают при этом такие факторы, как социально-экономический статус населения, поведенческие особенности (в частности, следование правилам гигиены), а также факторы окружающей среды. Miller Neilan et al. (2010), которые также изучают холеру, вводят в модель новые компоненты, отвечающие за загрязнённость питьевой воды и за бессимптомное течение болезни. 

Hyman and Li (2007) делят класс заразившихся на подклассы, в зависимости от того, сколько времени люди заражены. Авторы предполагают, что некоторые люди с развитием у них болезни меняют поведение: менее активно контактируют с другими или лечатся. В таком случае они заражают меньше людей, и большая их доля выздоравливает.

Наконец, в обзорной работе Allen (2008) показывает несколько моделей на базе SIR, в которых применяются вероятности (например, вероятность исчезновения заболевания или, наоборот, его вспышки). Такие модели называются стохастическими.

Жёлтый кластер: социальные сети

Этот кластер показывает, как болезнь передаётся через социальные контакты. Можно предположить, что самые общительные члены сети заражают больше всего людей — но если их круг общения изолирован от остальной части сети, то инфекция не распространится далеко. Предположим тогда, что самые опасные передатчики болезни — те, кто контактирует с разными сообществами. Правда, в очень больших сетях выявить таких людей сложно, поскольку это требует затратных вычислений. В одной из самых цитируемых статей кластера, Chen et al. (2012) предлагают новую, менее сложную в подсчётах метрику для самых влиятельных передатчиков инфекции. Ещё один способ выявить основных распространителей вируса описан в статье Li et al. (2014).

В целом, публикации этого кластера пробуют разные подходы к моделированию эпидемии, предполагая, что она распространяется по сетям контактов (Kenah and Robins 2007; Lindquist et al. 2011). В том числе рассматриваются ситуации, когда вирус мутирует, либо параллельно распространяется несколько инфекций (Masuda and Konno 2006). Отдельная тема кластера — передача заболеваний половым путём (Rocha, Liljeros, and Holme 2011).

Синий кластер: бегущая волна

Волны «бегут», если они перемещаются в пространстве — как звуковая волна распространяется от нас к собеседнику. Если мы говорим достаточно громко и у собеседника нет проблем со слухом, он услышит сказанное. Теперь представим, что вместо звука распространяется болезнь: с этим подходом мы можем смоделировать её передачу (Bai and Zhang 2015; Li and Yang 2014; Wang and Wang 2016). Как показывают Wang and Wu (2009), сам факт того, распространяется ли болезнь, зависит полностью от основного репродуктивного числа (число людей, которым заразившийся человек может передать вирус, если ни у кого нет иммунитета). А вот скорость распространения болезни зависит и от других факторов, например, от того, путешествуют ли люди на большие расстояния.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.