22 октября 2019, вторник, 07:25
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

12 апреля 2017, 10:55

Ученые МФТИ объяснили «танцы» вейлевских частиц на поверхности кристаллов

Электронный спектр в объеме вейлевского полуметалла описывается совокупностью четного числа конусов («долин»), центрированных в особых точках импульсного пространства (в таких точках скрыта нетривиальная топология, и их называют также «дьявольскими»)
Электронный спектр в объеме вейлевского полуметалла описывается совокупностью четного числа конусов («долин»), центрированных в особых точках импульсного пространства (в таких точках скрыта нетривиальная топология, и их называют также «дьявольскими»)
МФТИ

Физики из МФТИ получили объяснение загадочного явления - поведения вейлевских фермионов на поверхности  вейлевских полуметаллов, считающихся трехмерным аналогом графена. Открытие поможет развитию сверхбыстрой электроники, одним из элементов которой вполне вероятно будут вейлевские полуметаллы. Соответствующая статья была опубликована в Physical Review В, в престижном разделе Rapid Communications, кратко о работе сообщается в пресс-релизе Московского физико-технического института.

Существование вейлевских фермионов, было предсказано немецким физиком Германом Вейлем еще в начале XX века. Однако титанические усилия по их обнаружению в природе долгое время были безуспешными. Лишь в 2015 году они были обнаружены на опыте, и не в огромных коллайдерах, как ожидалось, а в миниатюрных кристаллах, получивших название вейлевских полуметаллов. Исследования этих материалов стремительно развиваются и являются одной из самых «горячих» точек современной физики.

Вейлевский полуметалл считается трехмерным аналогом графена, двумерного кристалла с уникальными свойствами, за открытие которого выпускники МФТИ Андрей Гейм и Константин Новоселов получили Нобелевскую премию по физике в 2010 г.  Электроны в  графене и полуметаллах Вейля  считаются безмассовыми частицами, как фотоны, но в отличие от последних обладают электрическим зарядом, с чем связаны перспективы применений в электронике. Важно, что свойства электронов в этих и ряде других материалов обладают, как недавно выяснилось, качественно новыми особенностями, описываемыми топологической теорией. Интересно отметить, что за внедрение общих топологических представлений в физику конденсированного состояния группа ученых получила Нобелевскую премию по физике 2016 года.

В теоретическом исследовании, проведенном аспирантом МФТИ Жанной Девизоровой под руководством профессора МФТИ Владимира Волкова, рассматривались поверхностные состояния вейлевских фермионов, то есть, на другом языке, поведение электронов вблизи поверхности кристалла, являющегося вейлевским полуметаллом. Особые состояния электронов на поверхности кристалла – поверхностные состояния – были предсказаны и теоретически исследованы в простейших моделях будущими лауреатами Нобелевской премии Игорем Таммом (СССР) и, позже,  Вильямом Шокли (США) еще в 1930-е годы, но стали интенсивно изучаться  экспериментально сравнительно недавно. О практической важности этих исследований говорит тот факт, что вся современная микроэлектроника основана на эксплуатации токопроводящих приповерхностных каналов на кремнии, который, впрочем, не является топологическим материалом.

Поведение любой частицы во внешних полях определяется законом дисперсии - зависимостью энергии частицы от ее импульса. Именно закон дисперсии электронов (синоним: электронный спектр) определяет электронные свойства кристалла, например, электропроводность. Электронный спектр в объеме вейлевского полуметалла описывается совокупностью четного числа конусов - «долин», центрированных в особых точках импульсного пространства.

Замечательными особенностями обладает поверхность такого кристалла. Экзотическая форма закона дисперсии частиц, заселяющих поверхностные состояния в вейлевских полуметаллах, является визитной карточкой вейлевских полуметаллов. Точки спектра, соединяющие состояния с одинаковой энергией необычны:: они не замкнуты и имеют форму дуг в двумерном импульсном пространстве. Дуги связывают принадлежащие разным долинам конические точки в электронном спектре  и называются ферми-арками (для обычных электронов эти контуры замкнуты и похожи на окружность). Теоретическое описание ферми-арок до сих пор было основано на очень сложных («первопринципных») и не прозрачных компьютерных расчетах. Ученые из МФТИ учли, что далеко от границы вейлевские фермионы в каждой долине подчиняются дифференциальным уравнениям Вейля, и сумели вывести граничные условия, которые впервые корректно учитывают междолинное взаимодействие на поверхности полуметалла. Систему уравнений Вейля для двух долин с этими граничными условиями удалось решить «вручную» и, поэтому, аналитически найти форму ферми-арок. Результат описывает опытные данные не только качественно, но и количественно, и доказывает, что основной причиной формирования ферми-арок является сильное междолинное взаимодействие при рассеянии вейлевских фермионов на поверхности кристалла.

Использование вейлевских полуметаллов может оказаться чрезвычайно полезным при создании сверхбыстрой электроники.  Сейчас разрабатывается, пока теоретически, новое поколение электронных приборов на основе вейлевских полуметаллов. Аналитический подход, разработанный учеными из МФТИ, позволяет сравнительно просто учитывать влияние на вейлевские фермионы электрических и магнитных полей. Эвристический потенциал разработанного метода может существенно облегчить продвижение в приборном направлении.

Обсудите в соцсетях

Система Orphus
«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология клонирование комета кометы компаративистика космос культура лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса глобальное потепление грипп информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2019.