8 мая 2021, суббота, 04:34
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Машинное обучение помогло моделировать межатомные взаимодействия

МФТИ

Группа ученых из Московского физико-технического института, НИИ автоматики имени Н. Л. Духова и Сколтеха под руководством Артема Оганова применила метод машинного обучения для моделирования поведения алюминия и урана при различных температурах, давлениях и в разных фазовых состояниях. Моделирование химических систем позволяет предсказывать их свойства в различных условиях до проведения экспериментов, что в дальнейшем даёт возможность воплотить в реальность наиболее перспективные материалы. Результаты опубликованы в журнале Scientific Reports, кратко о них рассказывает пресс-релиз МФТИ.

Активное развитие науки последних ста лет привело к наличию удивительного разнообразия органических и неорганических соединений, белковых и липидных структур, множества схем химических реакций. Однако чем больше новых структур и молекул, тем больше времени требуется для того, чтобы исследовать их строение, биохимические и физические свойства, изучить модели их поведения в различных условиях и возможные реакции взаимодействия с другими веществами. На данный момент изучать вышеперечисленные свойства возможно с помощью компьютерного моделирования.

Сейчас самый популярный метод моделирования основан на использовании набора параметров, описывающих рассматриваемую биохимическую систему: длины связей в молекулах, углы между атомами, заряды и так далее – так называемый «метод силовых полей». Однако использование этого метода не позволяет точно воспроизводить квантово-механические силы, которые действуют в молекулах. Кроме того, точные квантово-механические расчеты занимают много времени, не позволяют рассчитывать свойства больших систем и ограничиваются парой сотен атомов. Преодолеть это препятствие помогают модели машинного обучения. Обучаясь на относительно небольшой выборке данных (получаемых в квантово-механических расчетах), эти модели затем могут быть использованы вместо квантово-механических расчетов, поскольку обладают такой же точностью, но требуют примерно в тысячу раз меньше вычислительных ресурсов.

Ученые применили машинное обучение для моделирования межатомных взаимодействий в кристаллах и расплавах двух элементов: алюминия и урана. Алюминий является хорошо изученным металлом с известными физико-химическими свойствами. Уран был выбран, наоборот, из-за наличия разнящихся опубликованных данных о его физико-химических свойствах и желания исследователей эти свойства уточнить.

В ходе данной работы с помощью обученной модели исследователи изучали такие свойства, как плотность фононных состояний, энтропия и температура плавления алюминия. Иван Круглов, сотрудник лаборатории компьютерного дизайна материалов МФТИ, рассказывает: «Величины сил межмолекулярных взаимодействий атомов в кристаллах можно успешно применять для предсказания поведения атомов этого элемента при других температурах и в других фазовых состояниях, а также, наоборот, — зная свойства системы в жидком фазовом состоянии, узнать поведение атомов в кристаллической решетке. Таким образом, появляется возможность расчета фазовой диаграммы урана на основании данных о его кристаллической структуре. Показывая состояние вещества в зависимости от давления и температуры, фазовые диаграммы позволяют определять возможности и границы применения элементов».

Основным критерием достоверности виртуально полученных данных стало их сравнение с экспериментальной информацией. Использованный метод моделирования показал хорошую точность. Информация, полученная методом машинного обучения, имеет меньшие погрешности, чем методы моделирования, использующие силовые поля. Данное исследование заключается в повышении скорости и точности моделирования систем атомов методом машинного обучения, предложенным авторами в 2016 году.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астронавты астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги виноделие вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники средневековье старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция темная материя физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2021.