30 июля 2021, пятница, 16:03
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

19 февраля 2020, 12:00

Ученым удалось выяснить структуру «перевернутого» родопсина

Димер гелиородопсина 48С12 в мембране (серые диски)
Димер гелиородопсина 48С12 в мембране (серые диски)
K. Kovalev et al.

Ученые из МФТИ совместно с коллегами из Франции, Германии и Испании одними из первых в мире раскрыли и изучили структуру высокого разрешения белка из нового семейства гелиородопсинов. В свое время открытие канальных родопсинов привело к появлению оптогенетики — методики управления нервными или мышечными клетками в живом организме с помощью света. Работа была поддержана Российским научным фондом и Российским фондом фундаментальных исследований. Исследование опубликовано в научном журнале PNAS, кратко о его результатах рассказывает пресс-служба МФТИ.

Оптогенетика основана на внедрении в мембрану нейронов специальных белков — опсинов, реагирующих на возбуждение светом. Исследования в этой области открывают новые возможности в терапии болезни Паркинсона, депрессии, тревожности и эпилепсии. Родопсины относятся к обширной группе опсинов. Эти белки содержат специальную группу — ретиналь, при поглощении фотона которой белок активируется. На сегодня с помощью геномных и метагеномных исследований найдено более 10 тысяч генов родопсинов. Родопсины имеются у бактерий, архей, эукариот и гигантских вирусов и вносят основной вклад в захват солнечной энергии в океане.

Огромное разнообразие белков, их биологическая важность и многочисленные биотехнологические приложения создают необходимость изучения их структуры. Понимание структуры белка помогает определять механизмы действия и даже функции. Большой вклад в развитие этой области традиционно вносят сотрудники Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ. В прошлом году сотрудниками центра были расшифрованы структуры белка KR2 и родопсина из гигантского вируса.

Несмотря на различия свойств и структур родопсинов, их ориентация в мембране обычно одинакова. Белки имеют два конца, называемые N- и C-, по наличию амино- и карбоксильной группы соответственно. Все известные родопсины ориентированы в мембране таким образом, чтобы N-концевой фрагмент оказывался снаружи клетки. Однако у недавно открытого семейства гелиородопсинов всё перевернуто с ног на голову: N-конец располагается внутри клетки. Сотрудниками лаборатории впервые расшифрована структура представителя этого семейства, белка 48C12, показаны ключевые отличия от известных родопсинов и сделано предположение о функции гелиородопсинов.

«Гелиородопсины — необычные белки. Полученные нами структуры высокого разрешения продемонстрировали как их уникальную глобальную архитектуру, так и детали внутреннего устройства и взаимодействий между ключевыми аминокислотными остатками», — говорит аспирант МФТИ Кирилл Ковалёв, один из первых авторов работы.

 
Карты электронной плотности высокого качества определяют наличие аниона ацетата в активном центре гелиородопсина 48С12. Изображение предоставлено авторами исследования

Ученые смогли проанализировать структуру белка 48C12 в двух состояниях и сравнить ее со структурами других микробных родопсинов. Так, было показано, что внутри белка, в его цитоплазматической части, находится полость, заполненная большим количеством молекул воды. В одном из полученных состояний белка в полости была обнаружена молекула ацетата. Таким образом, полость может играть роль «активного центра» белка, в котором происходит связывание субстрата, такого как нитрат или карбонат. Несмотря на это предположение авторов, функция и биологическая роль гелиородопсинов остается неизвестной.

Валентин Горделий, научный координатор Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ, поясняет: «Столь необычная структура белка и его свойства позволяют нам предположить энзиматическую функцию гелиородопсинов. Кроме того, наша работа показала, что среди этого семейства могут быть выделены группы белков с различными функциями».

Таким образом, ученые расшифровали структуру гелиородопсина 48С12 и показали принципиальное отличие от других микробных родопсинов. Результаты работы открывают новые возможности для дальнейшего изучения гелиородопсинов.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астронавты астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги виноделие вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы малярия мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники средневековье старение старообрядцы стартапы статистика табак такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция темная материя физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2021.