22 апреля 2021, четверг, 20:11
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Искусственный интеллект сможет оценивать пористость почвы по рентгеновской томографии

Пример обработки изображений: оригинальное трехмерное изображение почвы (рентгеновская томография) и сегментированное с помощью нейронной сети
Пример обработки изображений: оригинальное трехмерное изображение почвы (рентгеновская томография) и сегментированное с помощью нейронной сети
Lavrukhin et al./Soil and Tillage Research, 2021

Ученые из Института физики Земли имени О. Ю. Шмидта, МГУ имени М. В. Ломоносова и Почвенного института имени В. В. Докучаева проверили, может ли нейросеть эффективно определять пористость и строение почвы по изображениям рентгеновской томографии. Обычно невозможно оценить эти параметры без вмешательства человека, так как современные методы обработки изображений с участием оператора часто приводят к ошибкам. Предложенный учеными подход позволяет это сделать всего с 5 % ошибок и в будущем поможет оценивать структурное состояние почвы, в том числе для нужд сельского хозяйства. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в журнале Soil and Tillage Research, кратко о них рассказывается в пресс-релизе РНФ.

Поровое пространство почвы выполняет полезные функции: проведение воды и воздуха, удерживание разных химических соединений (иногда опасных для человека), а также обеспечение плодородия почвы и ее целостности. Знания о структуре и свойствах почв необходимы также для проектирования зданий, дорог и других объектов инфраструктуры. Во всех этих случаях нужно оценивать строение почвы: количество и размеры пор, связность порового пространства на разных уровнях структурной организации, наличие каналов передвижения воды и растворенных в ней веществ.

Для изучения морфологии почвы можно использовать метод рентгеновской компьютерной томографии (РКТ), который позволяет получать наглядные трехмерные изображения внутренней структуры неповреждающим методом. Чтобы определить пути передвижения жидкостей и размеры пор, томографические изображения нужно обработать: разделить их на рентген-контрастные фазы по градациям серого, то есть сегментировать. При сегментации РКТ-изображения на две фазы оно становится бинарным (однобитным), где поры становятся черными, а всё, что им не соответствует и условно относится к твердой фазе, — белым. От того, насколько хорошо сегментировано изображение, зависит характеристика параметров образца.

«При оценке свойств почвы по РКТ-изображениям используют 2D- или 3D-анализ изображений на основе сегментации. До недавнего времени сегментация чаще всего делалась вручную и зависела от восприятия каждого человека, что неэффективно и создает множество проблем, когда требуется сравнить сразу много различных образцов друг с другом, — комментирует Кирилл Герке, ведущий научный сотрудник лаборатории фундаментальных проблем нефтегазовой геофизики и геофизического мониторинга Института физики Земли имени О. Ю. Шмидта. — Современные методы сегментации РКТ-изображений используют нейронные сети, то есть их можно обучить на данных из общедоступных библиотек изображений, что будет улучшать качество сегментации и со временем сведет к минимуму человеческий фактор. Но на этапе обучения нейросеть всё равно требуют вмешательства человека».

Авторы исследования предложили алгоритмы для оценивания свойств почвы с большой точностью без участия человека. Для этого они использовали гибридную архитектуру нейронной сети ResNet-101 + U-net. Первая модель нужна для извлечения из исходного изображения важных признаков, а вторая — для сегментации исходного изображения на их основе.

Разработанная система моделирует поры и их твердые стенки, подстраивая параметры моделей под тренировочную выборку из размеченных изображений. С ее помощью ученые успешно обработали семь РКТ-изображений почвы. Погрешность оценивали двумя способами: моделированием потоков жидкостей (флюидов) в порах и на основе классических показателей компьютерного зрения. Для некоторых образцов из набора погрешность составила всего 5 %. Такой результат говорит о том, что разработанная нейронная сеть работает точнее, чем все современные автоматические аналоги. Тем не менее у некоторых образцов погрешность была существенно выше 5 %. Ученые полагают, что это можно объяснить недостаточностью некоторых структур образцов грунта в наборе обучающих данных, поэтому в будущей работе они планируют использовать более крупные библиотеки РКТ-изображений почвы.

 

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги виноделие вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники средневековье старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция темная материя физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2021.